Evolution of Tracking Data
Beginner
10 min read
1 views
Nov 27, 2025
# Evolution of Tracking Data
Tracking data provides granular position information at multiple frames per second, enabling advanced spatial and temporal analysis.
## Current State
### Processing Tracking Data
```python
import pandas as pd
import numpy as np
# Load tracking data (25 fps)
tracking = pd.read_csv('match_tracking.csv')
# Calculate velocity
tracking['velocity'] = np.sqrt(
tracking['x'].diff()**2 + tracking['y'].diff()**2
) * 25 # frames per second
# Identify sprints
sprints = tracking[tracking['velocity'] > 7.0] # m/s
```
### Spatial Analysis
```r
library(dplyr)
library(sp)
# Calculate space control
calculate_control <- function(x, y, velocity) {
R <- velocity * time_to_control + 4 # radius of control
return(pi * R^2)
}
tracking_data <- tracking_data %>%
mutate(control_area = calculate_control(x_pos, y_pos, velocity))
```
## Future Innovations
- Bone and limb tracking for biomechanics
- Eye tracking for attention analysis
- Ball spin and trajectory prediction
- Real-time tactical formation detection
Discussion
Have questions or feedback? Join our community discussion on
Discord or
GitHub Discussions.
Table of Contents
Related Topics
Quick Actions