Power Play Optimization
Beginner
10 min read
1 views
Nov 27, 2025
Power play optimization uses statistical analysis to maximize scoring opportunities during man-advantage situations.
## Key Metrics
**Python Analysis:**
```python
import pandas as pd
import numpy as np
# Power play efficiency metrics
pp_data = pd.DataFrame({
'shots': [8, 6, 10, 7, 9],
'goals': [1, 0, 2, 1, 1],
'time': [120, 100, 140, 110, 130] # seconds
})
# Calculate shooting percentage and shots per minute
pp_data['shooting_pct'] = (pp_data['goals'] / pp_data['shots']) * 100
pp_data['shots_per_min'] = pp_data['shots'] / (pp_data['time'] / 60)
pp_data['expected_goals'] = pp_data['shots'] * 0.15 # League avg PP shooting %
print("Power Play Efficiency:")
print(pp_data[['shots', 'goals', 'shooting_pct', 'shots_per_min']])
```
**R Analysis:**
```r
# Power play zone time analysis
library(ggplot2)
pp_data <- data.frame(
formation = c("Umbrella", "Overload", "1-3-1", "Spread"),
zone_time = c(85, 78, 82, 80),
shot_attempts = c(12, 15, 10, 11),
goals = c(2, 2, 1, 1)
)
# Calculate efficiency
pp_data$efficiency <- pp_data$goals / pp_data$zone_time * 100
print(pp_data)
# Shot attempt rate
pp_data$attempt_rate <- pp_data$shot_attempts / pp_data$zone_time
```
## Optimization Strategies
- Personnel deployment based on handedness
- Formation selection vs opponent's PK structure
- Entry zone timing and set-up efficiency
- Shot location heat maps for optimal positioning
Discussion
Have questions or feedback? Join our community discussion on
Discord or
GitHub Discussions.
Table of Contents
Related Topics
Quick Actions