Real-Time Analytics
Beginner
10 min read
0 views
Nov 27, 2025
# Real-Time Analytics
Real-time analytics enable coaches and analysts to make data-driven decisions during matches through live performance metrics.
## Implementation
### Live Performance Dashboard
```python
import streamlit as st
import pandas as pd
from datetime import datetime
# Real-time data stream
def update_metrics():
current_data = fetch_live_data()
# Calculate rolling metrics
possession = current_data['possession_pct'].iloc[-1]
xg = current_data['xg'].sum()
pressure = current_data['pressures'].rolling(5).mean().iloc[-1]
return {
'possession': possession,
'xg': xg,
'pressure_index': pressure
}
# Display live metrics
st.title('Live Match Analytics')
metrics = update_metrics()
st.metric('Possession', f"{metrics['possession']:.1f}%")
st.metric('Expected Goals', f"{metrics['xg']:.2f}")
```
### Substitution Recommendation
```r
library(shiny)
library(dplyr)
# Real-time fatigue monitoring
monitor_fatigue <- function(tracking_data) {
current_minute <- max(tracking_data$minute)
fatigue_scores <- tracking_data %>%
filter(minute >= current_minute - 10) %>%
group_by(player_id) %>%
summarise(
distance = sum(distance),
sprints = sum(velocity > 7),
fatigue_index = distance / max_distance + (sprints / 10)
) %>%
arrange(desc(fatigue_index))
return(fatigue_scores)
}
```
## Applications
- Tactical adjustment recommendations
- Substitution timing optimization
- Opposition weakness detection
- Fatigue management alerts
Discussion
Have questions or feedback? Join our community discussion on
Discord or
GitHub Discussions.
Table of Contents
Related Topics
Quick Actions