Fan Engagement Analytics
Beginner
10 min read
1 views
Nov 27, 2025
# Fan Engagement Analytics
Analytics can transform how fans interact with football through personalized content, engagement tracking, and enhanced viewing experiences.
## Engagement Metrics
### Social Media Analysis
```python
import pandas as pd
from textblob import TextBlob
# Analyze fan sentiment
def analyze_sentiment(tweets_df):
sentiments = []
for tweet in tweets_df['text']:
analysis = TextBlob(tweet)
sentiments.append(analysis.sentiment.polarity)
tweets_df['sentiment'] = sentiments
# Aggregate by time period
engagement = tweets_df.groupby('timestamp').agg({
'sentiment': 'mean',
'retweets': 'sum',
'likes': 'sum'
})
return engagement
# Track match excitement
excitement_peaks = engagement[engagement['likes'] > engagement['likes'].quantile(0.9)]
```
### Viewing Behavior
```r
library(dplyr)
library(survival)
# Analyze viewer retention
viewer_data <- streaming_data %>%
group_by(user_id, match_id) %>%
summarise(
watch_time = max(timestamp) - min(timestamp),
completion_rate = watch_time / match_duration,
engagement_score = n_distinct(interaction_type)
)
# Predict churn
churn_model <- glm(
churned ~ completion_rate + engagement_score + team_performance,
data = viewer_data,
family = binomial
)
```
## Personalization
- Content recommendation engines
- Predictive notifications for key moments
- Fantasy football optimization
- AR/VR enhanced viewing experiences
Discussion
Have questions or feedback? Join our community discussion on
Discord or
GitHub Discussions.
Table of Contents
Related Topics
Quick Actions