Analytics Workflows
Beginner
10 min read
1 views
Nov 27, 2025
# Analytics Workflows
## Python Example: Weekly Game Prep Workflow
```python
import pandas as pd
from datetime import datetime, timedelta
class GamePrepWorkflow:
def __init__(self, game_date):
self.game_date = game_date
self.tasks = []
def create_weekly_schedule(self):
"""Generate analytics tasks for game week"""
days_before = 6
tasks = [
{'day': 6, 'task': 'Opponent film breakdown', 'hours': 8},
{'day': 5, 'task': 'Tendency analysis', 'hours': 6},
{'day': 4, 'task': 'Personnel matchups', 'hours': 5},
{'day': 3, 'task': 'Situational analysis', 'hours': 4},
{'day': 2, 'task': 'Game plan support', 'hours': 6},
{'day': 1, 'task': 'Final reports & presentation', 'hours': 4},
{'day': 0, 'task': 'In-game analytics support', 'hours': 3}
]
schedule = pd.DataFrame(tasks)
schedule['date'] = [self.game_date - timedelta(days=d)
for d in schedule['day']]
return schedule
# Example usage
game_date = datetime(2024, 9, 15)
workflow = GamePrepWorkflow(game_date)
print(workflow.create_weekly_schedule())
```
## R Example: In-Game Analytics Process
```r
# Real-time decision support workflow
in_game_workflow <- function(game_state) {
# Simulate in-game analytics pipeline
steps <- data.frame(
step = 1:5,
process = c("Data Collection", "Situation Classification",
"Recommendation Generation", "Coach Communication",
"Outcome Tracking"),
target_time_seconds = c(5, 10, 15, 5, 10)
)
steps$cumulative_time <- cumsum(steps$target_time_seconds)
return(steps)
}
workflow <- in_game_workflow("4th down decision")
print(workflow)
```
Discussion
Have questions or feedback? Join our community discussion on
Discord or
GitHub Discussions.
Table of Contents
Related Topics
Quick Actions