Getting Coaching Buy-In
Beginner
10 min read
1 views
Nov 27, 2025
# Getting Coaching Buy-In
## Python Example: Presenting Insights
```python
import pandas as pd
import matplotlib.pyplot as plt
# Example: Show coaches actionable insights
play_success = pd.DataFrame({
'formation': ['11 Personnel', '12 Personnel', '21 Personnel'],
'success_rate': [0.62, 0.58, 0.54],
'yards_per_play': [6.2, 5.8, 4.9]
})
# Simple visualization coaches can understand
fig, ax = plt.subplots(1, 2, figsize=(12, 4))
play_success.plot(x='formation', y='success_rate', kind='bar', ax=ax[0], legend=False)
ax[0].set_title('Success Rate by Formation')
play_success.plot(x='formation', y='yards_per_play', kind='bar', ax=ax[1],
legend=False, color='orange')
ax[1].set_title('Yards per Play by Formation')
plt.tight_layout()
plt.show()
```
## R Example: Building Trust
```r
# Track prediction accuracy to build credibility
predictions <- data.frame(
week = 1:10,
predicted_outcome = c("W", "L", "W", "W", "L", "W", "L", "W", "W", "L"),
actual_outcome = c("W", "L", "W", "L", "L", "W", "L", "W", "W", "W"),
stringsAsFactors = FALSE
)
predictions$correct <- predictions$predicted_outcome == predictions$actual_outcome
accuracy <- mean(predictions$correct)
cat(sprintf("Model Accuracy: %.1f%%\n", accuracy * 100))
```
Discussion
Have questions or feedback? Join our community discussion on
Discord or
GitHub Discussions.
Table of Contents
Related Topics
Quick Actions