Appendix B: Statistical Tables

This appendix provides reference tables for the most commonly used statistical distributions in sports betting analysis. While modern software makes table lookups largely unnecessary for computation, these tables remain valuable for building intuition, checking quick calculations, and understanding critical values referenced throughout the text.


B.1 Standard Normal (Z) Distribution Table

The table gives P(Z <= z) for the standard normal distribution N(0,1). For negative z values, use the symmetry property: P(Z <= -z) = 1 - P(Z <= z).

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998

Commonly used critical values:

Confidence Level alpha (two-tailed) z critical
90% 0.10 1.645
95% 0.05 1.960
99% 0.01 2.576
99.5% 0.005 2.807
99.9% 0.001 3.291

Betting application: To test whether a bettor's 55% win rate over 400 bets at -110 odds (break-even = 52.38%) is statistically significant: z = (0.55 - 0.5238) / sqrt(0.5238 * 0.4762 / 400) = 0.0262 / 0.02496 = 1.05. Since 1.05 < 1.96, we cannot reject the null at the 5% level. The result is not statistically significant.


B.2 Student's t-Distribution Critical Values

The table gives t_{alpha, nu} such that P(T > t) = alpha for a t-distribution with nu degrees of freedom. For two-tailed tests, use the column for alpha/2.

df (nu) alpha=0.10 alpha=0.05 alpha=0.025 alpha=0.01 alpha=0.005 alpha=0.001
1 3.078 6.314 12.706 31.821 63.657 318.309
2 1.886 2.920 4.303 6.965 9.925 22.327
3 1.638 2.353 3.182 4.541 5.841 10.215
4 1.533 2.132 2.776 3.747 4.604 7.173
5 1.476 2.015 2.571 3.365 4.032 5.893
6 1.440 1.943 2.447 3.143 3.707 5.208
7 1.415 1.895 2.365 2.998 3.499 4.785
8 1.397 1.860 2.306 2.896 3.355 4.501
9 1.383 1.833 2.262 2.821 3.250 4.297
10 1.372 1.812 2.228 2.764 3.169 4.144
12 1.356 1.782 2.179 2.681 3.055 3.930
15 1.341 1.753 2.131 2.602 2.947 3.733
20 1.325 1.725 2.086 2.528 2.845 3.552
25 1.316 1.708 2.060 2.485 2.787 3.450
30 1.310 1.697 2.042 2.457 2.750 3.385
40 1.303 1.684 2.021 2.423 2.704 3.307
60 1.296 1.671 2.000 2.390 2.660 3.232
120 1.289 1.658 1.980 2.358 2.617 3.160
inf 1.282 1.645 1.960 2.326 2.576 3.090

Betting application: When comparing the mean ROI of two betting strategies over a small sample of 15 weeks, use df = 14 for the paired t-test. At alpha = 0.05 (two-tailed), the critical value is t_{0.025, 14} = 2.145 (interpolated between df=12 and df=15).


B.3 Chi-Squared Distribution Critical Values

The table gives chi^2_{alpha, k} such that P(X > chi^2) = alpha for the chi-squared distribution with k degrees of freedom.

df (k) alpha=0.995 alpha=0.99 alpha=0.975 alpha=0.95 alpha=0.90 alpha=0.10 alpha=0.05 alpha=0.025 alpha=0.01 alpha=0.005
1 0.000 0.000 0.001 0.004 0.016 2.706 3.841 5.024 6.635 7.879
2 0.010 0.020 0.051 0.103 0.211 4.605 5.991 7.378 9.210 10.597
3 0.072 0.115 0.216 0.352 0.584 6.251 7.815 9.348 11.345 12.838
4 0.207 0.297 0.484 0.711 1.064 7.779 9.488 11.143 13.277 14.860
5 0.412 0.554 0.831 1.145 1.610 9.236 11.070 12.833 15.086 16.750
6 0.676 0.872 1.237 1.635 2.204 10.645 12.592 14.449 16.812 18.548
7 0.989 1.239 1.690 2.167 2.833 12.017 14.067 16.013 18.475 20.278
8 1.344 1.646 2.180 2.733 3.490 13.362 15.507 17.535 20.090 21.955
9 1.735 2.088 2.700 3.325 4.168 14.684 16.919 19.023 21.666 23.589
10 2.156 2.558 3.247 3.940 4.865 15.987 18.307 20.483 23.209 25.188
15 4.601 5.229 6.262 7.261 8.547 22.307 24.996 27.488 30.578 32.801
20 7.434 8.260 9.591 10.851 12.443 28.412 31.410 34.170 37.566 39.997
25 10.520 11.524 13.120 14.611 16.473 34.382 37.652 40.646 44.314 46.928
30 13.787 14.953 16.791 18.493 20.599 40.256 43.773 46.979 50.892 53.672

Betting application: A calibration test (Chapter 17) bins predicted probabilities into 10 groups and compares observed frequencies to expected frequencies using a chi-squared goodness-of-fit test with df = 8 (10 bins minus 2 for estimated parameters). At alpha = 0.05, the critical value is 15.507. A test statistic exceeding this suggests the model is poorly calibrated.


B.4 F-Distribution Critical Values (Selected)

The table gives F_{alpha, d1, d2} for alpha = 0.05 (upper tail). d1 = numerator degrees of freedom (columns); d2 = denominator degrees of freedom (rows).

d2 \ d1 1 2 3 4 5 10 20 30
5 6.608 5.786 5.409 5.192 5.050 4.735 4.558 4.496
10 4.965 4.103 3.708 3.478 3.326 2.978 2.774 2.700
15 4.543 3.682 3.287 3.056 2.901 2.544 2.328 2.247
20 4.351 3.493 3.098 2.866 2.711 2.348 2.124 2.039
25 4.242 3.385 2.991 2.759 2.603 2.236 2.007 1.919
30 4.171 3.316 2.922 2.690 2.534 2.165 1.932 1.841
40 4.085 3.232 2.839 2.606 2.449 2.077 1.839 1.744
60 4.001 3.150 2.758 2.525 2.368 1.993 1.748 1.649
120 3.920 3.072 2.680 2.447 2.290 1.910 1.659 1.554
inf 3.841 2.996 2.605 2.372 2.214 1.831 1.571 1.462

Betting application: The F-test is used in ANOVA to compare the predictive power of multiple models simultaneously (Chapter 16). When comparing 4 models on 60 games, use d1 = 3 (4-1) and d2 = 56 (60-4). The critical value at alpha = 0.05 is approximately 2.77.


B.5 Common Probability Distribution Properties

Distribution Parameters Mean Variance PMF/PDF Typical Use in Betting
Bernoulli p in [0,1] p p(1-p) P(X=1)=p, P(X=0)=1-p Single bet outcome
Binomial n in N, p in [0,1] np np(1-p) C(n,k)p^k(1-p)^{n-k} Wins in n bets
Poisson lambda > 0 lambda lambda e^{-lambda}*lambda^k/k! Goals, runs scored
Geometric p in (0,1] 1/p (1-p)/p^2 p*(1-p)^{k-1} Bets until first win
Neg. Binomial r, p r/p r(1-p)/p^2 C(k-1,r-1)p^r(1-p)^{k-r} Bets until r-th win
Uniform a, b (a+b)/2 (b-a)^2/12 1/(b-a) for x in [a,b] Prior ignorance
Normal mu, sigma^2 mu sigma^2 (2pisigma^2)^{-1/2}exp(-(x-mu)^2/(2sigma^2)) Point spreads, totals
Log-Normal mu, sigma^2 exp(mu+sigma^2/2) [exp(sigma^2)-1]exp(2mu+sigma^2) (xsigmasqrt(2pi))^{-1}exp(-(ln(x)-mu)^2/(2*sigma^2)) Bankroll growth
Exponential lambda > 0 1/lambda 1/lambda^2 lambdaexp(-lambdax) Time between events
Gamma alpha, beta alpha/beta alpha/beta^2 beta^alphax^{alpha-1}exp(-beta*x)/Gamma(alpha) Aggregate scoring rates
Beta a, b > 0 a/(a+b) ab/((a+b)^2*(a+b+1)) x^{a-1}*(1-x)^{b-1}/B(a,b) Win probability prior
Student's t nu > 0 0 (nu>1) nu/(nu-2) (nu>2) Complex (see text) Small-sample inference
Chi-squared k > 0 k 2k Complex (see text) Calibration tests
Bivariate Normal mu1,mu2,sigma1,sigma2,rho (mu1,mu2) (sigma1^2, sigma2^2, rhosigma1sigma2) See A.3 Correlated scores

B.6 Sample Size Requirements for Betting Analysis

The following table provides the minimum number of bets required to detect a given edge at the 95% confidence level (alpha = 0.05, two-tailed) with 80% power (beta = 0.20), assuming standard -110 odds (break-even at 52.38%).

True Win Rate Edge over Break-Even Required Sample Size Approximate Timeframe (5 bets/day)
53% 0.62% 39,604 21.7 years
54% 1.62% 5,805 3.2 years
55% 2.62% 2,213 1.2 years
56% 3.62% 1,156 7.7 months
57% 4.62% 709 4.7 months
58% 5.62% 479 3.2 months
60% 7.62% 260 52 days
65% 12.62% 95 19 days

Formula used: n = (z_{alpha/2} + z_{beta})^2 * p_0*(1-p_0) / (p_1 - p_0)^2, where p_0 = 0.5238 and p_1 is the true win rate.

Key insight for bettors: Even a genuinely skilled bettor with a 55% win rate at -110 needs over 2,200 bets to achieve statistical significance. This explains why many profitable bettors cannot "prove" their edge to skeptics within a single season. The variance inherent in betting outcomes makes short-term results nearly meaningless for distinguishing skill from luck.

Additional Sample Size Guidelines

Analysis Goal Typical Minimum n Notes
Model calibration test (10 bins) 500 At least 50 per bin
Logistic regression (k predictors) 10*k / min(p, 1-p) Events-per-variable rule
Random forest feature importance 1,000+ Stability of permutation importance
Neural network training (tabular) 5,000+ Depends on architecture
Poisson regression for goals 300+ games Per team-season
Elo rating convergence 50+ games per team After initialization
Market efficiency test 5,000+ lines Sufficient variation in closing odds
Closing line value analysis 1,000+ bets Detect 1% CLV at 80% power

B.7 Quick Reference: Percentiles of the Standard Normal

For rapid mental math in betting contexts:

Percentile z-value Practical Interpretation
50th 0.000 Median outcome
60th 0.253 Slight lean
70th 0.524 Moderate advantage
75th 0.674 Third quartile
80th 0.842 Clear advantage
84.1th 1.000 One standard deviation above mean
90th 1.282 Strong lean
95th 1.645 One-tailed 5% significance
97.5th 1.960 Two-tailed 5% significance
99th 2.326 One-tailed 1% significance
99.5th 2.576 Two-tailed 1% significance
99.9th 3.090 Highly significant
99.99th 3.719 Rare event

Point spread conversion: If point spreads are modeled as Normal(spread, sigma) with sigma approximately 13.5 points (NFL), a 3-point favorite has P(cover) = P(Z > -3/13.5) = P(Z > -0.222) = 0.588, or approximately 59% against the spread before accounting for the vig.


For computations requiring greater precision than these tables provide, use the scipy.stats module in Python as described in Appendix C.