Appendix B: Statistical Tables

This appendix provides the statistical tables most frequently referenced in prediction market analysis. While software makes table lookups largely unnecessary for computation, having these values at hand builds intuition about the magnitudes involved and serves as a quick sanity check on computed results.


B.1 Standard Normal Distribution Table (Z-Table)

The table gives $\Phi(z) = P(Z \leq z)$ for the standard normal distribution $Z \sim \mathcal{N}(0, 1)$. To find $P(Z > z)$, compute $1 - \Phi(z)$.

$z$ 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990

Commonly used critical values:

Confidence Level $\alpha$ (two-tailed) $z_{\alpha/2}$
90% 0.10 1.645
95% 0.05 1.960
99% 0.01 2.576
99.9% 0.001 3.291

B.2 t-Distribution Critical Values

The table gives $t_{\alpha, \nu}$ such that $P(T > t_{\alpha, \nu}) = \alpha$ for a t-distribution with $\nu$ degrees of freedom. For two-tailed tests at significance $\alpha$, use the column $\alpha/2$.

df ($\nu$) $\alpha = 0.10$ $\alpha = 0.05$ $\alpha = 0.025$ $\alpha = 0.01$ $\alpha = 0.005$
1 3.078 6.314 12.706 31.821 63.657
2 1.886 2.920 4.303 6.965 9.925
3 1.638 2.353 3.182 4.541 5.841
4 1.533 2.132 2.776 3.747 4.604
5 1.476 2.015 2.571 3.365 4.032
6 1.440 1.943 2.447 3.143 3.707
7 1.415 1.895 2.365 2.998 3.499
8 1.397 1.860 2.306 2.896 3.355
9 1.383 1.833 2.262 2.821 3.250
10 1.372 1.812 2.228 2.764 3.169
12 1.356 1.782 2.179 2.681 3.055
15 1.341 1.753 2.131 2.602 2.947
20 1.325 1.725 2.086 2.528 2.845
25 1.316 1.708 2.060 2.485 2.787
30 1.310 1.697 2.042 2.457 2.750
40 1.303 1.684 2.021 2.423 2.704
60 1.296 1.671 2.000 2.390 2.660
120 1.289 1.658 1.980 2.358 2.617
$\infty$ 1.282 1.645 1.960 2.326 2.576

Usage note: When evaluating whether a prediction market strategy produces statistically significant returns, use the t-distribution with $n - 1$ degrees of freedom when the sample size $n$ is small (fewer than approximately 30 trades). For larger samples, the t-distribution closely approximates the normal.


B.3 Chi-Square Critical Values

The table gives $\chi^2_{\alpha, \nu}$ such that $P(\chi^2 > \chi^2_{\alpha, \nu}) = \alpha$ for a chi-square distribution with $\nu$ degrees of freedom.

df ($\nu$) $\alpha = 0.10$ $\alpha = 0.05$ $\alpha = 0.025$ $\alpha = 0.01$ $\alpha = 0.005$
1 2.706 3.841 5.024 6.635 7.879
2 4.605 5.991 7.378 9.210 10.597
3 6.251 7.815 9.348 11.345 12.838
4 7.779 9.488 11.143 13.277 14.860
5 9.236 11.070 12.833 15.086 16.750
6 10.645 12.592 14.449 16.812 18.548
7 12.017 14.067 16.013 18.475 20.278
8 13.362 15.507 17.535 20.090 21.955
9 14.684 16.919 19.023 21.666 23.589
10 15.987 18.307 20.483 23.209 25.188
15 22.307 24.996 27.488 30.578 32.801
20 28.412 31.410 34.170 37.566 39.997
25 34.382 37.652 40.646 44.314 46.928
30 40.256 43.773 46.979 50.892 53.672

Usage note: Chi-square tests are commonly used in prediction markets for calibration testing. Given $k$ probability bins, the calibration chi-square statistic compares the observed frequency of outcomes in each bin to the expected frequency. The test uses $k - 1$ degrees of freedom.


B.4 Common Probability Values

This quick-reference table converts between the various probability representations commonly encountered in prediction markets and sports betting.

Probability Decimal Odds Fractional Odds American Odds Implied Prob (with vig)
0.01 100.00 99/1 +9900 ~0.010
0.05 20.00 19/1 +1900 ~0.052
0.10 10.00 9/1 +900 ~0.104
0.15 6.67 17/3 +567 ~0.156
0.20 5.00 4/1 +400 ~0.208
0.25 4.00 3/1 +300 ~0.260
0.30 3.33 7/3 +233 ~0.313
0.33 3.00 2/1 +200 ~0.345
0.40 2.50 3/2 +150 ~0.417
0.50 2.00 1/1 +100 / -100 ~0.524
0.60 1.67 2/3 -150 ~0.625
0.67 1.50 1/2 -200 ~0.694
0.70 1.43 3/7 -233 ~0.727
0.75 1.33 1/3 -300 ~0.781
0.80 1.25 1/4 -400 ~0.833
0.85 1.18 3/17 -567 ~0.880
0.90 1.11 1/9 -900 ~0.930
0.95 1.05 1/19 -1900 ~0.968
0.99 1.01 1/99 -9900 ~0.995

Conversion formulas:

  • Probability to decimal odds: $d = 1 / p$
  • Decimal odds to probability: $p = 1 / d$
  • Probability to American odds: If $p \geq 0.5$: $A = -100p / (1-p)$; if $p < 0.5$: $A = +100(1-p) / p$
  • The "implied prob with vig" column assumes a typical 4.5% overround (vigorish), illustrating how bookmakers shade probabilities to ensure a profit margin.

B.5 Kelly Criterion Quick Reference

Optimal Kelly fraction $f^* = (bp - q) / b$ where $p$ is the true win probability, $q = 1 - p$, and $b$ is the net odds (payout per unit wagered). The table shows $f^*$ as a percentage of bankroll.

Even Money Bets ($b = 1$)

True Prob ($p$) Edge ($p - 0.5$) Kelly $f^*$ Half Kelly Quarter Kelly
0.51 0.01 2.0% 1.0% 0.5%
0.52 0.02 4.0% 2.0% 1.0%
0.53 0.03 6.0% 3.0% 1.5%
0.55 0.05 10.0% 5.0% 2.5%
0.57 0.07 14.0% 7.0% 3.5%
0.60 0.10 20.0% 10.0% 5.0%
0.65 0.15 30.0% 15.0% 7.5%
0.70 0.20 40.0% 20.0% 10.0%
0.75 0.25 50.0% 25.0% 12.5%
0.80 0.30 60.0% 30.0% 15.0%

Various Odds and Probabilities

Net Odds ($b$) True Prob ($p$) Break-even Prob Edge Kelly $f^*$
0.5 0.70 0.667 0.033 6.7%
0.5 0.75 0.667 0.083 16.7%
1.0 0.55 0.500 0.050 10.0%
1.0 0.60 0.500 0.100 20.0%
2.0 0.40 0.333 0.067 10.0%
2.0 0.45 0.333 0.117 17.5%
3.0 0.30 0.250 0.050 6.7%
3.0 0.35 0.250 0.100 13.3%
5.0 0.22 0.167 0.053 5.3%
5.0 0.25 0.167 0.083 8.3%
9.0 0.12 0.100 0.020 2.2%
9.0 0.15 0.100 0.050 5.6%

Practical guidelines:

  • If $f^* \leq 0$, do not bet (no edge).
  • Half Kelly ($f^*/2$) achieves approximately 75% of the growth rate with substantially lower variance and drawdown.
  • Quarter Kelly ($f^*/4$) is recommended when probability estimates are uncertain.
  • Never exceed full Kelly; "over-betting" reduces long-run growth rate and can be catastrophic.

B.6 Brier Score Reference

The Brier score is $BS = (p - o)^2$ where $p$ is the predicted probability and $o \in \{0, 1\}$ is the outcome. Lower is better. The table shows Brier scores for various prediction-outcome combinations.

When Event Occurs ($o = 1$)

Predicted $p$ Brier Score Interpretation
0.00 1.000 Maximally wrong: confident it would not happen
0.05 0.903 Nearly certain it would not happen
0.10 0.810 Very poor prediction
0.20 0.640 Poor prediction
0.30 0.490 Below average
0.40 0.360 Slightly below average
0.50 0.250 Coin-flip prediction (baseline for binary events)
0.60 0.160 Slightly above average
0.70 0.090 Good prediction
0.80 0.040 Very good prediction
0.90 0.010 Excellent prediction
0.95 0.003 Near-perfect prediction
1.00 0.000 Perfect prediction

When Event Does Not Occur ($o = 0$)

Predicted $p$ Brier Score Interpretation
0.00 0.000 Perfect prediction
0.05 0.003 Near-perfect prediction
0.10 0.010 Excellent prediction
0.20 0.040 Very good prediction
0.30 0.090 Good prediction
0.40 0.160 Slightly above average
0.50 0.250 Coin-flip prediction (baseline)
0.60 0.360 Slightly below average
0.70 0.490 Below average
0.80 0.640 Poor prediction
0.90 0.810 Very poor prediction
1.00 1.000 Maximally wrong: confident it would happen

Benchmark Brier Scores

Forecaster Type Typical Mean Brier Score Notes
Always predict 0.50 0.250 Uninformed baseline for binary events
Climatological base rate 0.200 - 0.240 Always predict the historical frequency
Typical poll-based model 0.150 - 0.200 Simple aggregation of public data
Good prediction market 0.100 - 0.170 Efficient aggregation of diverse information
Expert superforecaster 0.080 - 0.150 Trained, calibrated individual forecasters
Perfect foresight 0.000 Theoretical lower bound

B.7 Sample Size Requirements

The following tables give the minimum number of observations $n$ needed to detect an effect of a given size at standard significance levels. These are essential for determining how many trades or predictions are needed before strategy performance can be evaluated with statistical confidence.

Comparing a Proportion to a Known Value (One-Sample Z-Test)

Minimum $n$ to detect a difference $|p - p_0|$ from a null proportion $p_0 = 0.50$ at power $= 0.80$.

Detectable Difference $\alpha = 0.10$ $\alpha = 0.05$ $\alpha = 0.01$
0.01 6,766 9,604 16,587
0.02 1,692 2,401 4,147
0.03 752 1,068 1,843
0.05 271 385 663
0.07 138 196 339
0.10 68 97 166
0.15 30 43 74
0.20 17 25 42

Interpretation: If your trading strategy has a true win rate of 55% (a 5-percentage-point edge over 50%), you need approximately 385 trades to confirm this edge is statistically significant at the 5% level with 80% power.

Comparing Two Proportions (Two-Sample Z-Test)

Minimum $n$ per group to detect a difference $|p_1 - p_2|$ at power $= 0.80$, assuming $p_1 \approx p_2 \approx 0.50$.

Detectable Difference $\alpha = 0.10$ $\alpha = 0.05$ $\alpha = 0.01$
0.02 3,382 4,802 8,294
0.05 542 769 1,327
0.10 136 193 332
0.15 60 86 148
0.20 34 49 84

Detecting a Non-Zero Mean Return (One-Sample t-Test)

Minimum $n$ to detect a mean return $\mu$ when returns have standard deviation $\sigma$ (expressed as effect size $d = \mu / \sigma$) at power $= 0.80$.

Effect Size ($d$) Description $\alpha = 0.10$ $\alpha = 0.05$ $\alpha = 0.01$
0.05 Very small edge 2,714 3,848 6,632
0.10 Small edge 679 963 1,659
0.20 Small-medium edge 170 241 415
0.30 Medium edge 76 108 185
0.50 Large edge 28 39 67
0.80 Very large edge 11 15 27

Practical implications for prediction market trading:

  • Edges in prediction markets are typically small ($d$ between 0.05 and 0.20). This means hundreds or thousands of trades may be needed to confirm that a strategy genuinely produces positive returns.
  • Strategies that produce large per-trade returns ($d > 0.50$) are rare and usually involve illiquid or niche markets.
  • When backtesting over limited historical data, be cautious about claiming statistical significance. These sample size requirements explain why many apparently profitable backtests fail to replicate out of sample.
  • For calibration testing, a minimum of approximately 100 forecasts per probability bin is recommended for reliable assessment.

Summary. The tables in this appendix support the quantitative analyses presented throughout the book. The z-table and t-table underpin hypothesis testing for strategy evaluation. The probability conversion table is essential for moving between prediction market prices and traditional odds formats. The Kelly table provides quick sizing decisions. The Brier score reference supports forecast evaluation, and the sample size tables provide realistic expectations about how much data is required to draw confident conclusions about trading performance.