Appendix F: Notation Guide

This appendix provides a comprehensive reference for the mathematical notation used throughout Learning Prediction Markets — From Concepts to Strategies. Symbols are organized by category. For each entry we give the symbol, its LaTeX representation, its meaning, the chapter where it is first introduced, and an example of its usage.


Probability and Statistics

Symbol LaTeX Meaning Chapter Example
$P(A)$ P(A) Probability of event $A$ 1 $P(\text{Rain}) = 0.3$
$P(A \mid B)$ P(A \mid B) Conditional probability of $A$ given $B$ 7 $P(\text{Win} \mid \text{Incumbent}) = 0.6$
$P(A, B)$ P(A, B) Joint probability of $A$ and $B$ 7 $P(\text{Rain}, \text{Flood}) = 0.05$
$\mathbb{E}[X]$ \mathbb{E}[X] Expected value of random variable $X$ 3 $\mathbb{E}[\text{payoff}] = 0.6 \times 1 + 0.4 \times 0 = 0.6$
$\text{Var}(X)$ \text{Var}(X) Variance of $X$ 8 $\text{Var}(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$
$\sigma$ \sigma Standard deviation 8 $\sigma = \sqrt{\text{Var}(X)}$
$\sigma^2$ \sigma^2 Variance (alternative notation) 8 $\sigma^2 = 0.04$
$\mu$ \mu Mean of a distribution 8 $\mu = \mathbb{E}[X]$
$\rho$ \rho Correlation coefficient between two variables 29 $\rho_{XY} = \text{Cov}(X,Y) / (\sigma_X \sigma_Y)$
$\text{Cov}(X,Y)$ \text{Cov}(X,Y) Covariance of $X$ and $Y$ 29 $\text{Cov}(X,Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$
$\Phi(\cdot)$ \Phi(\cdot) Standard normal CDF 15 $\Phi(1.96) \approx 0.975$
$\phi(\cdot)$ \phi(\cdot) Standard normal PDF 15 $\phi(0) = 1/\sqrt{2\pi}$
$\text{Beta}(\alpha, \beta)$ \text{Beta}(\alpha, \beta) Beta distribution with shape parameters $\alpha, \beta$ 8 Prior $\sim \text{Beta}(2, 5)$
$\text{Bin}(n, p)$ \text{Bin}(n, p) Binomial distribution 8 $X \sim \text{Bin}(10, 0.4)$
$\mathcal{N}(\mu, \sigma^2)$ \mathcal{N}(\mu, \sigma^2) Normal (Gaussian) distribution 8 $X \sim \mathcal{N}(0, 1)$
$\hat{p}$ \hat{p} Estimated probability (from data or model) 9 $\hat{p} = 0.72$
$p^*$ p^* True underlying probability 9 Calibration requires $\hat{p} \approx p^*$
$\mathbf{p}$ \mathbf{p} Vector of probabilities over outcomes 5 $\mathbf{p} = (p_1, p_2, \ldots, p_k)$
$n$ n Number of observations or sample size 8 $n = 500$ historical forecasts
$N$ N Total number of events, forecasts, or contracts 9 Brier score averaged over $N$ forecasts
$\theta$ \theta Parameter of a statistical model 8 Posterior $P(\theta \mid \text{data})$
$\hat{\theta}$ \hat{\theta} Estimated parameter value 23 $\hat{\theta}_{\text{MLE}}$

Market Mechanics

Symbol LaTeX Meaning Chapter Example
$\pi_i$ \pi_i Market price (implied probability) of outcome $i$ 2 $\pi_{\text{Yes}} = 0.65$
$q_i$ q_i Quantity of outcome-$i$ shares outstanding 5 $q_{\text{Yes}} = 1{,}200$ shares
$\mathbf{q}$ \mathbf{q} Vector of outstanding shares across outcomes 5 $\mathbf{q} = (q_1, q_2, \ldots, q_k)$
$C(\mathbf{q})$ C(\mathbf{q}) Cost function of a market maker 5 $C(\mathbf{q}) = b \ln\!\bigl(\sum_i e^{q_i/b}\bigr)$ (LMSR)
$b$ b Liquidity parameter of the LMSR 5 $b = 100$ controls price sensitivity
$\Delta q_i$ \Delta q_i Change in quantity of outcome-$i$ shares 5 Cost of trade $= C(\mathbf{q} + \Delta\mathbf{q}) - C(\mathbf{q})$
$p_i^{\text{bid}}$ p_i^{\text{bid}} Bid price for outcome $i$ 4 $p_{\text{Yes}}^{\text{bid}} = 0.62$
$p_i^{\text{ask}}$ p_i^{\text{ask}} Ask price for outcome $i$ 4 $p_{\text{Yes}}^{\text{ask}} = 0.65$
$s$ s Bid-ask spread 4 $s = p^{\text{ask}} - p^{\text{bid}} = 0.03$
$V$ V Trading volume (number of contracts traded) 14 $V = 5{,}000$ contracts per day
$\lambda$ \lambda Arrival rate of informed traders (Glosten-Milgrom) 14 $\lambda = 0.3$
$\Delta$ \Delta Market impact per unit traded 14 Price moves by $\Delta$ per contract
$x, y$ x, y Token reserves in a CPMM pool 5 $x \cdot y = k$
$k$ k Constant product invariant in CPMM 5 $x \cdot y = k = 10{,}000$
$\text{fee}$ \text{fee} Transaction fee rate 6 $\text{fee} = 0.02$ (2%)

Scoring Rules and Calibration

Symbol LaTeX Meaning Chapter Example
$S(\mathbf{p}, \omega)$ S(\mathbf{p}, \omega) Score assigned to forecast $\mathbf{p}$ when outcome $\omega$ is realized 9 $S(\mathbf{p}, \omega) = \ln(p_\omega)$ (log score)
$\text{BS}$ \text{BS} Brier score 9 $\text{BS} = \frac{1}{N}\sum_{i=1}^{N}(f_i - o_i)^2$
$f_i$ f_i Forecast probability for the $i$-th event 9 $f_i = 0.8$
$o_i$ o_i Outcome indicator (1 if event occurred, 0 otherwise) 9 $o_i = 1$
$\text{LS}$ \text{LS} Logarithmic score 9 $\text{LS} = \frac{1}{N}\sum_{i=1}^{N}\ln(f_i \cdot o_i + (1 - f_i)(1 - o_i))$
$\text{ECE}$ \text{ECE} Expected Calibration Error 10 $\text{ECE} = \sum_{m=1}^{M}\frac{|B_m|}{N}|\bar{f}_m - \bar{o}_m|$
$B_m$ B_m The $m$-th calibration bin 10 Events with $f_i \in [0.3, 0.4)$
$M$ M Number of calibration bins 10 $M = 10$ equal-width bins
$\bar{f}_m$ \bar{f}_m Mean predicted probability in bin $m$ 10 $\bar{f}_3 = 0.35$
$\bar{o}_m$ \bar{o}_m Observed frequency in bin $m$ 10 $\bar{o}_3 = 0.33$
$\text{REL}$ \text{REL} Reliability component of Brier score decomposition 9 $\text{REL} = \frac{1}{N}\sum_{m}|B_m|(\bar{f}_m - \bar{o}_m)^2$
$\text{RES}$ \text{RES} Resolution component of Brier score decomposition 9 Higher RES means better discrimination
$\text{UNC}$ \text{UNC} Uncertainty component of Brier score decomposition 9 $\text{UNC} = \bar{o}(1 - \bar{o})$

Information Theory

Symbol LaTeX Meaning Chapter Example
$H(X)$ H(X) Shannon entropy of random variable $X$ 5 $H(X) = -\sum_i p_i \ln p_i$
$D_{\text{KL}}(P \| Q)$ D_{\text{KL}}(P \| Q) Kullback-Leibler divergence from $Q$ to $P$ 9 $D_{\text{KL}} = \sum_i p_i \ln(p_i / q_i)$
$I(X; Y)$ I(X; Y) Mutual information between $X$ and $Y$ 22 $I(X;Y) = H(X) - H(X \mid Y)$
$H(X \mid Y)$ H(X \mid Y) Conditional entropy of $X$ given $Y$ 22 Remaining uncertainty after observing $Y$

Linear Algebra and Vectors

Symbol LaTeX Meaning Chapter Example
$\mathbf{x}$ \mathbf{x} Feature vector (bold lowercase) 22 $\mathbf{x} = (x_1, x_2, \ldots, x_d)$
$\mathbf{w}$ \mathbf{w} Weight vector in a linear model 22 $\hat{y} = \mathbf{w}^\top \mathbf{x} + w_0$
$\mathbf{w}^\top$ \mathbf{w}^\top Transpose of vector $\mathbf{w}$ 22 Dot product $\mathbf{w}^\top \mathbf{x}$
$\|\mathbf{x}\|$ \|\mathbf{x}\| Euclidean norm of vector $\mathbf{x}$ 9 Spherical score uses $\|\mathbf{p}\|$
$\mathbf{I}$ \mathbf{I} Identity matrix 23 Ridge penalty: $\lambda \mathbf{I}$
$\boldsymbol{\Sigma}$ \boldsymbol{\Sigma} Covariance matrix 29 $\boldsymbol{\Sigma}_{ij} = \text{Cov}(X_i, X_j)$

Calculus and Optimization

Symbol LaTeX Meaning Chapter Example
$\nabla f$ \nabla f Gradient of function $f$ 23 $\nabla_{\mathbf{w}} \mathcal{L}$ for gradient descent
$\frac{\partial f}{\partial x}$ \frac{\partial f}{\partial x} Partial derivative of $f$ with respect to $x$ 5 $\frac{\partial C}{\partial q_i} = \pi_i$ (LMSR price)
$\mathcal{L}$ \mathcal{L} Loss function or objective function 23 $\mathcal{L}(\theta) = -\sum_i \ln P(y_i \mid \mathbf{x}_i; \theta)$
$\arg\min$ \arg\min Argument that minimizes a function 23 $\hat{\theta} = \arg\min_\theta \mathcal{L}(\theta)$
$\arg\max$ \arg\max Argument that maximizes a function 28 $f^* = \arg\max_f \mathbb{E}[\ln W]$
$\sum$ \sum Summation 3 $\sum_{i=1}^k p_i = 1$
$\prod$ \prod Product 8 Likelihood $= \prod_{i=1}^n P(x_i \mid \theta)$
$\ln$ \ln Natural logarithm 5 $C(\mathbf{q}) = b \ln(\sum e^{q_i/b})$
$\exp$ \exp Exponential function 5 $\pi_i = \exp(q_i/b) / \sum_j \exp(q_j/b)$
$\lambda$ \lambda Regularization parameter (in ML context) 23 $\mathcal{L}_{\text{reg}} = \mathcal{L} + \lambda \|\mathbf{w}\|^2$

Trading and Portfolio Management

Symbol LaTeX Meaning Chapter Example
$W_t$ W_t Wealth (bankroll) at time $t$ 28 $W_0 = \$1{,}000$ initial capital
$f^*$ f^* Optimal Kelly fraction 28 $f^* = (bp - q) / b$ for odds $b$
$f$ f Fraction of bankroll wagered 28 $f = 0.5 f^*$ (half Kelly)
$G$ G Expected geometric growth rate 28 $G = \mathbb{E}[\ln(W_{t+1}/W_t)]$
$R_t$ R_t Return in period $t$ 30 $R_t = (W_t - W_{t-1}) / W_{t-1}$
$\bar{R}$ \bar{R} Mean return over a period 30 $\bar{R} = \frac{1}{T}\sum_{t=1}^T R_t$
$r_f$ r_f Risk-free rate 30 $r_f = 0.04$ (4% annually)
$\text{SR}$ \text{SR} Sharpe ratio 30 $\text{SR} = (\bar{R} - r_f) / \sigma_R$
$\text{MDD}$ \text{MDD} Maximum drawdown 29 $\text{MDD} = \max_{t}(W_{\text{peak}} - W_t) / W_{\text{peak}}$
$\text{VaR}_\alpha$ \text{VaR}_\alpha Value at Risk at confidence level $\alpha$ 29 $\text{VaR}_{0.95}$: 5% chance of exceeding this loss
$\text{PnL}$ \text{PnL} Profit and Loss 30 $\text{PnL} = \text{Revenue} - \text{Cost}$
$\alpha$ \alpha Alpha: excess risk-adjusted return (in trading context) 30 $\alpha = R_{\text{strategy}} - R_{\text{benchmark}}$
$\text{EV}$ \text{EV} Expected value of a position 3 $\text{EV} = p \cdot \text{payoff} - (1-p) \cdot \text{cost}$
$T$ T Number of time periods or trading horizon 25 Walk-forward over $T = 52$ weeks
$t$ t Time index 24 Price at time $t$: $\pi_t$

Set Notation and General Conventions

Symbol LaTeX Meaning Chapter Example
$\Omega$ \Omega Sample space (set of all possible outcomes) 2 $\Omega = \{\text{Yes}, \text{No}\}$
$\omega$ \omega A specific realized outcome 2 $\omega = \text{Yes}$
$k$ k Number of possible outcomes 2 $k = 5$ candidates in an election market
$i, j$ i, j Index variables 2 Outcome $i$, forecaster $j$
$\mathbb{R}$ \mathbb{R} The set of real numbers 5 $C : \mathbb{R}^k \to \mathbb{R}$
$[0, 1]$ [0, 1] The unit interval 2 $\pi_i \in [0, 1]$
$\mathbb{1}\{\cdot\}$ \mathbb{1}\{\cdot\} Indicator function (1 if condition holds, 0 otherwise) 9 $o_i = \mathbb{1}\{\omega_i = \text{Yes}\}$
$\approx$ \approx Approximately equal to 2 $\pi \approx P(\text{event})$
$\propto$ \propto Proportional to 8 $P(\theta \mid \text{data}) \propto P(\text{data} \mid \theta) P(\theta)$
$\sim$ \sim Distributed as 8 $X \sim \text{Beta}(2, 5)$
$\triangleq$ \triangleq Defined as 5 $\pi_i \triangleq \partial C / \partial q_i$

Notes on Conventions

  1. Bold lowercase letters ($\mathbf{x}, \mathbf{q}, \mathbf{p}, \mathbf{w}$) denote column vectors. Bold uppercase letters ($\mathbf{I}, \boldsymbol{\Sigma}$) denote matrices.

  2. Greek letters are used for parameters ($\theta, \lambda, \mu, \sigma$), while Latin letters are used for observed quantities and indices ($n, k, i, t$).

  3. Hats ($\hat{p}, \hat{\theta}$) indicate estimated values. Bars ($\bar{R}, \bar{o}$) indicate sample means. Stars ($f^*, p^*$) indicate optimal or true values.

  4. Subscripts typically index outcomes ($p_i$), time ($W_t$), or bins ($B_m$). Superscripts denote labels (bid, ask) or powers ($\sigma^2$), depending on context.

  5. Throughout the book, $\ln$ denotes the natural logarithm (base $e$) and $\log$ without subscript also refers to the natural logarithm unless stated otherwise. Information-theoretic quantities (entropy, KL divergence) use natural logarithms and are measured in nats.

  6. When the same symbol serves double duty (e.g., $\lambda$ for both the informed-trader arrival rate in the Glosten-Milgrom model and the regularization parameter in machine learning), the intended meaning is always clear from context. The chapter and section references in this guide identify the primary usage.