Library › Basketball Analytics › Appendices › Appendix F: Notation Guide
Appendix F: Notation Guide
This appendix provides a comprehensive reference for all mathematical, statistical, and basketball-specific notation used throughout this textbook.
F.1 General Mathematical Notation
Basic Symbols
Symbol
Meaning
Example
$=$
Equals
$a = b$
$\neq$
Not equal to
$a \neq b$
$\approx$
Approximately equal
$\pi \approx 3.14$
$\equiv$
Identically equal, defined as
$TS\% \equiv \frac{PTS}{2(FGA + 0.44 \cdot FTA)}$
$<, >$
Less than, greater than
$x < 5$
$\leq, \geq$
Less than or equal, greater than or equal
$n \geq 30$
$\pm$
Plus or minus
$\bar{x} \pm 1.96 \cdot SE$
$\propto$
Proportional to
$y \propto x$
$\infty$
Infinity
$\lim_{n \to \infty}$
Arithmetic Operations
Symbol
Meaning
Example
$+, -, \times, \div$
Basic arithmetic
$a + b$, $a \times b$
$\cdot$
Multiplication (dot notation)
$a \cdot b$
$a^n$
Exponentiation
$x^2$
$\sqrt{x}$, $\sqrt[n]{x}$
Square root, nth root
$\sqrt{4} = 2$
$|x|$
Absolute value
$|-3| = 3$
$\lfloor x \rfloor$
Floor function (round down)
$\lfloor 3.7 \rfloor = 3$
$\lceil x \rceil$
Ceiling function (round up)
$\lceil 3.2 \rceil = 4$
$\log x$
Logarithm (base 10 or natural)
$\log 100 = 2$
$\ln x$
Natural logarithm (base $e$)
$\ln e = 1$
$e^x$ or $\exp(x)$
Exponential function
$e^{0} = 1$
Set Notation
Symbol
Meaning
Example
$\{a, b, c\}$
Set containing elements
$\{PG, SG, SF, PF, C\}$
$\in$
Element of
$x \in \mathbb{R}$
$\notin$
Not an element of
$x \notin \emptyset$
$\subseteq$
Subset of
$A \subseteq B$
$\cup$
Union
$A \cup B$
$\cap$
Intersection
$A \cap B$
$\emptyset$ or $\{\}$
Empty set
$A \cap B = \emptyset$
$\mathbb{R}$
Set of real numbers
$x \in \mathbb{R}$
$\mathbb{R}^n$
n-dimensional real space
$\mathbf{x} \in \mathbb{R}^5$
$\mathbb{Z}$
Set of integers
$n \in \mathbb{Z}$
$\mathbb{N}$
Set of natural numbers
$n \in \mathbb{N}$
Summation and Product
Symbol
Meaning
Example
$\sum_{i=1}^{n} x_i$
Sum from $i=1$ to $n$
$\sum_{i=1}^{n} x_i = x_1 + x_2 + \cdots + x_n$
$\prod_{i=1}^{n} x_i$
Product from $i=1$ to $n$
$\prod_{i=1}^{n} x_i = x_1 \times x_2 \times \cdots \times x_n$
$\displaystyle\sum$
Display-style summation
Used in equations
F.2 Linear Algebra Notation
Vectors
Symbol
Meaning
Example
$\mathbf{x}$ or $\vec{x}$
Column vector (bold/arrow)
$\mathbf{x} = (x_1, x_2, \ldots, x_n)^T$
$\mathbf{x}^T$
Transpose of vector
Row vector
$x_i$
The $i$th element of vector $\mathbf{x}$
$x_3$ is the third element
$\|\mathbf{x}\|$
Euclidean norm (L2 norm)
$\|\mathbf{x}\| = \sqrt{\sum x_i^2}$
$\|\mathbf{x}\|_1$
L1 norm (Manhattan distance)
$\|\mathbf{x}\|_1 = \sum |x_i|$
$\|\mathbf{x}\|_\infty$
L-infinity norm (max norm)
$\|\mathbf{x}\|_\infty = \max_i |x_i|$
$\mathbf{x} \cdot \mathbf{y}$
Dot product
$\mathbf{x} \cdot \mathbf{y} = \sum x_i y_i$
$\mathbf{0}$
Zero vector
$(0, 0, \ldots, 0)^T$
$\mathbf{1}$
Vector of ones
$(1, 1, \ldots, 1)^T$
Matrices
Symbol
Meaning
Example
$\mathbf{A}$ or $A$
Matrix (bold capital)
$\mathbf{A} \in \mathbb{R}^{m \times n}$
$a_{ij}$ or $A_{ij}$
Element in row $i$, column $j$
$a_{23}$ is row 2, column 3
$\mathbf{A}^T$
Transpose of matrix
$(A^T)_{ij} = a_{ji}$
$\mathbf{A}^{-1}$
Inverse of matrix
$\mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$
$\mathbf{I}$ or $\mathbf{I}_n$
Identity matrix
$n \times n$ identity
$\det(\mathbf{A})$ or $|\mathbf{A}|$
Determinant
Scalar value
$\text{tr}(\mathbf{A})$
Trace (sum of diagonal)
$\text{tr}(\mathbf{A}) = \sum a_{ii}$
$\text{rank}(\mathbf{A})$
Rank of matrix
Number of linearly independent rows/columns
$\mathbf{AB}$
Matrix multiplication
$(\mathbf{AB})_{ij} = \sum_k a_{ik}b_{kj}$
$\mathbf{A} \odot \mathbf{B}$
Element-wise (Hadamard) product
$(A \odot B)_{ij} = a_{ij} \cdot b_{ij}$
Eigenvalues and Eigenvectors
Symbol
Meaning
$\lambda$
Eigenvalue
$\mathbf{v}$
Eigenvector
$\mathbf{A}\mathbf{v} = \lambda\mathbf{v}$
Eigenvalue equation
$\mathbf{\Lambda}$
Diagonal matrix of eigenvalues
$\mathbf{V}$
Matrix of eigenvectors
F.3 Probability and Statistics Notation
Probability
Symbol
Meaning
Example
$P(A)$
Probability of event $A$
$P(\text{Made Shot}) = 0.45$
$P(A|B)$
Conditional probability
$P(\text{Made}|\text{Open})$
$P(A \cap B)$
Probability of $A$ and $B$
Joint probability
$P(A \cup B)$
Probability of $A$ or $B$
$P(A) + P(B) - P(A \cap B)$
$P(A^c)$ or $P(\bar{A})$
Probability of not $A$
$1 - P(A)$
$\Omega$
Sample space
Set of all outcomes
Random Variables
Symbol
Meaning
Example
$X, Y, Z$
Random variables (capitals)
$X = $ Points scored
$x, y, z$
Specific values (lowercase)
$x = 25$
$p(x)$ or $P(X = x)$
Probability mass function (PMF)
Discrete
$f(x)$
Probability density function (PDF)
Continuous
$F(x)$ or $P(X \leq x)$
Cumulative distribution function (CDF)
$F(x) = \int_{-\infty}^{x} f(t) dt$
Expectation and Moments
Symbol
Meaning
Formula
$E[X]$ or $\mathbb{E}[X]$
Expected value (mean)
$E[X] = \sum_x x \cdot p(x)$
$\mu$
Population mean
$\mu = E[X]$
$\bar{x}$ or $\bar{X}$
Sample mean
$\bar{x} = \frac{1}{n}\sum_{i=1}^{n} x_i$
$\text{Var}(X)$
Variance
$E[(X - \mu)^2]$
$\sigma^2$
Population variance
$\sigma^2 = \text{Var}(X)$
$s^2$
Sample variance
$s^2 = \frac{1}{n-1}\sum(x_i - \bar{x})^2$
$\sigma$
Population standard deviation
$\sigma = \sqrt{\sigma^2}$
$s$
Sample standard deviation
$s = \sqrt{s^2}$
$\text{SD}(X)$ or $\sigma_X$
Standard deviation
$\sqrt{\text{Var}(X)}$
$\text{SE}$
Standard error
$SE = \frac{s}{\sqrt{n}}$
$\text{Cov}(X, Y)$
Covariance
$E[(X - \mu_X)(Y - \mu_Y)]$
$\rho_{XY}$ or $\text{Corr}(X, Y)$
Correlation coefficient
$\frac{\text{Cov}(X,Y)}{\sigma_X \sigma_Y}$
$r$
Sample correlation
Estimated $\rho$
Common Distributions
Notation
Distribution
Parameters
$X \sim N(\mu, \sigma^2)$
Normal
Mean $\mu$, variance $\sigma^2$
$Z \sim N(0, 1)$
Standard normal
Mean 0, variance 1
$X \sim \text{Binomial}(n, p)$
Binomial
Trials $n$, probability $p$
$X \sim \text{Poisson}(\lambda)$
Poisson
Rate $\lambda$
$X \sim \text{Uniform}(a, b)$
Uniform
Range $[a, b]$
$X \sim \text{Exponential}(\lambda)$
Exponential
Rate $\lambda$
$X \sim t_{df}$
Student's t
Degrees of freedom $df$
$X \sim \chi^2_{df}$
Chi-square
Degrees of freedom $df$
$X \sim F_{df_1, df_2}$
F-distribution
Numerator and denominator df
$X \sim \text{Beta}(\alpha, \beta)$
Beta
Shape parameters $\alpha, \beta$
Hypothesis Testing
Symbol
Meaning
$H_0$
Null hypothesis
$H_1$ or $H_a$
Alternative hypothesis
$\alpha$
Significance level (Type I error rate)
$\beta$
Type II error rate
$1 - \beta$
Statistical power
$p$-value
Probability of observing result under $H_0$
$z$, $t$, $\chi^2$, $F$
Test statistics
$z_{\alpha/2}$
Critical z-value for significance level $\alpha$
$t_{\alpha/2, df}$
Critical t-value
Confidence Intervals
Symbol
Meaning
$CI$
Confidence interval
$(1 - \alpha)$
Confidence level
$\bar{x} \pm z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$
CI for mean (known $\sigma$)
$\bar{x} \pm t_{\alpha/2, n-1} \cdot \frac{s}{\sqrt{n}}$
CI for mean (unknown $\sigma$)
F.4 Regression Notation
Linear Regression
Symbol
Meaning
$Y$
Dependent variable (response)
$X$
Independent variable (predictor)
$\beta_0$
Intercept (population)
$\beta_1, \ldots, \beta_p$
Slope coefficients (population)
$\hat{\beta}_0, \hat{\beta}_1$
Estimated coefficients
$\varepsilon$ or $\epsilon$
Error term
$\hat{Y}$ or $\hat{y}$
Predicted value
$e_i = y_i - \hat{y}_i$
Residual
$Y = \beta_0 + \beta_1 X + \varepsilon$
Simple linear regression model
$Y = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$
Matrix form
$\hat{\boldsymbol{\beta}} = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{Y}$
OLS estimator
Model Evaluation
Symbol
Meaning
Formula
$R^2$
Coefficient of determination
$1 - \frac{SS_{res}}{SS_{tot}}$
$R^2_{adj}$
Adjusted R-squared
$1 - \frac{(1-R^2)(n-1)}{n-p-1}$
$SS_{tot}$
Total sum of squares
$\sum(y_i - \bar{y})^2$
$SS_{reg}$
Regression sum of squares
$\sum(\hat{y}_i - \bar{y})^2$
$SS_{res}$
Residual sum of squares
$\sum(y_i - \hat{y}_i)^2$
$MSE$
Mean squared error
$\frac{SS_{res}}{n - p - 1}$
$RMSE$
Root mean squared error
$\sqrt{MSE}$
$MAE$
Mean absolute error
$\frac{1}{n}\sum|y_i - \hat{y}_i|$
Regularization
Symbol
Meaning
$\lambda$
Regularization parameter (penalty)
Ridge: $\sum(y_i - \hat{y}_i)^2 + \lambda\sum\beta_j^2$
L2 penalty
LASSO: $\sum(y_i - \hat{y}_i)^2 + \lambda\sum|\beta_j|$
L1 penalty
Elastic Net: L1 + L2 combined
Mixed penalty
$\alpha$
Elastic net mixing parameter
Logistic Regression
Symbol
Meaning
$p = P(Y = 1|X)$
Probability of success
$\text{logit}(p) = \log\frac{p}{1-p}$
Log-odds (logit function)
$\text{odds} = \frac{p}{1-p}$
Odds ratio
$\sigma(z) = \frac{1}{1 + e^{-z}}$
Sigmoid function
F.5 Machine Learning Notation
General
Symbol
Meaning
$\mathbf{X}$
Feature matrix (design matrix)
$\mathbf{y}$
Target vector
$n$
Number of observations (samples)
$p$ or $d$
Number of features (dimensions)
$\mathcal{D}$
Dataset
$\mathcal{D}_{train}$, $\mathcal{D}_{test}$
Training and test sets
$\hat{f}$ or $h$
Learned function (hypothesis)
$\theta$ or $\mathbf{w}$
Model parameters (weights)
$\eta$
Learning rate
$J(\theta)$ or $L(\theta)$
Loss/cost function
$\nabla J$
Gradient of loss function
Cross-Validation
Symbol
Meaning
$k$
Number of folds
$k$-fold CV
k-fold cross-validation
LOOCV
Leave-one-out cross-validation
Clustering
Symbol
Meaning
$K$
Number of clusters
$\mu_k$
Centroid of cluster $k$
$c_i$
Cluster assignment for observation $i$
F.6 Basketball Statistics Notation
Traditional Box Score Statistics
Symbol
Meaning
Notes
$PTS$
Points
Total points scored
$REB$
Rebounds
ORB + DRB
$ORB$
Offensive rebounds
$DRB$
Defensive rebounds
$AST$
Assists
$STL$
Steals
$BLK$
Blocks
$TOV$
Turnovers
$PF$
Personal fouls
$FGM$
Field goals made
$FGA$
Field goals attempted
$FG\%$
Field goal percentage
$\frac{FGM}{FGA}$
$3PM$ or $FG3M$
Three-pointers made
$3PA$ or $FG3A$
Three-pointers attempted
$3P\%$ or $FG3\%$
Three-point percentage
$\frac{3PM}{3PA}$
$FTM$
Free throws made
$FTA$
Free throws attempted
$FT\%$
Free throw percentage
$\frac{FTM}{FTA}$
$MIN$ or $MP$
Minutes played
$GP$
Games played
$GS$
Games started
Rate Statistics
Symbol
Meaning
Formula
$PPG$
Points per game
$\frac{PTS}{GP}$
$RPG$
Rebounds per game
$\frac{REB}{GP}$
$APG$
Assists per game
$\frac{AST}{GP}$
$SPG$
Steals per game
$\frac{STL}{GP}$
$BPG$
Blocks per game
$\frac{BLK}{GP}$
$MPG$
Minutes per game
$\frac{MIN}{GP}$
Per 36
Statistics per 36 minutes
$\frac{Stat}{MIN} \times 36$
Per 100
Statistics per 100 possessions
Pace-adjusted
Efficiency Metrics
Symbol
Meaning
Formula
$TS\%$
True Shooting Percentage
$\frac{PTS}{2(FGA + 0.44 \cdot FTA)}$
$eFG\%$
Effective Field Goal Percentage
$\frac{FGM + 0.5 \cdot 3PM}{FGA}$
$ORtg$
Offensive Rating
Points per 100 possessions
$DRtg$
Defensive Rating
Points allowed per 100 possessions
$NetRtg$
Net Rating
$ORtg - DRtg$
$PER$
Player Efficiency Rating
See Chapter 9
$USG\%$
Usage Rate
$\frac{(FGA + 0.44 \cdot FTA + TOV) \cdot TmMP/5}{MP \cdot (TmFGA + 0.44 \cdot TmFTA + TmTOV)}$
Rebounding Percentages
Symbol
Meaning
Formula
$ORB\%$
Offensive Rebound Percentage
$\frac{ORB \cdot TmMP/5}{MP \cdot (TmORB + OppDRB)}$
$DRB\%$
Defensive Rebound Percentage
$\frac{DRB \cdot TmMP/5}{MP \cdot (TmDRB + OppORB)}$
$TRB\%$
Total Rebound Percentage
Playmaking and Defensive Percentages
Symbol
Meaning
$AST\%$
Assist Percentage
$TOV\%$
Turnover Percentage
$STL\%$
Steal Percentage
$BLK\%$
Block Percentage
Plus-Minus Metrics
Symbol
Meaning
Notes
$+/-$
Raw plus-minus
Point differential on court
$RAPM$
Regularized Adjusted Plus-Minus
Ridge regression adjusted
$BPM$
Box Plus-Minus
Box score estimate
$OBPM$
Offensive Box Plus-Minus
Offensive component
$DBPM$
Defensive Box Plus-Minus
Defensive component
$VORP$
Value Over Replacement Player
$(BPM + 2.0) \cdot \frac{MP}{3936}$
Win-Based Metrics
Symbol
Meaning
$WS$
Win Shares
$OWS$
Offensive Win Shares
$DWS$
Defensive Win Shares
$WS/48$
Win Shares per 48 minutes
$WAR$
Wins Above Replacement
Team Statistics
Symbol
Meaning
$Tm$ prefix
Team total (e.g., $TmFGA$)
$Opp$ prefix
Opponent total (e.g., $OppFGA$)
$Pace$
Possessions per 48 minutes
$Poss$
Possessions
F.7 Subscript and Superscript Conventions
Common Subscripts
Subscript
Meaning
Example
$i$
Observation/player index
$x_i$ is the $i$th player
$j$
Feature/variable index
$x_{ij}$ is player $i$, stat $j$
$t$
Time period
$x_t$ at time $t$
$k$
Cluster/group index
Cluster $k$
$\text{home}$, $\text{away}$
Game location
$PTS_{\text{home}}$
Common Superscripts
Superscript
Meaning
Example
$T$
Transpose
$\mathbf{A}^T$
$-1$
Inverse
$\mathbf{A}^{-1}$
$(i)$
The $i$th iteration
$\theta^{(i)}$
$*$
Optimal value
$\theta^*$
F.8 Greek Letter Reference
Lowercase Greek Letters
Letter
Name
Common Uses
$\alpha$
alpha
Significance level, learning rate, regularization mixing
$\beta$
beta
Regression coefficients, Type II error rate
$\gamma$
gamma
Discount factor, various parameters
$\delta$
delta
Small change, Kronecker delta
$\epsilon$
epsilon
Error term, small positive number
$\zeta$
zeta
Various parameters
$\eta$
eta
Learning rate
$\theta$
theta
General parameter
$\iota$
iota
Rarely used
$\kappa$
kappa
Condition number
$\lambda$
lambda
Eigenvalue, regularization parameter, Poisson rate
$\mu$
mu
Population mean
$\nu$
nu
Degrees of freedom
$\xi$
xi
Random variable
$\pi$
pi
Probability, proportion (also 3.14159...)
$\rho$
rho
Correlation coefficient, autocorrelation
$\sigma$
sigma
Standard deviation
$\tau$
tau
Various parameters, Kendall's tau
$\upsilon$
upsilon
Rarely used
$\phi$
phi
Normal PDF, various functions
$\chi$
chi
Chi-square related
$\psi$
psi
Various functions
$\omega$
omega
Angular frequency
Uppercase Greek Letters
Letter
Name
Common Uses
$\Gamma$
Gamma
Gamma function
$\Delta$
Delta
Change, difference
$\Theta$
Theta
Parameter space
$\Lambda$
Lambda
Diagonal matrix of eigenvalues
$\Xi$
Xi
Rarely used
$\Pi$
Pi
Product operator
$\Sigma$
Sigma
Summation, covariance matrix
$\Phi$
Phi
Normal CDF
$\Psi$
Psi
Various functions
$\Omega$
Omega
Sample space, big-O notation
F.9 Abbreviations Reference
Statistical Abbreviations
Abbreviation
Full Term
CI
Confidence Interval
CLT
Central Limit Theorem
CDF
Cumulative Distribution Function
CV
Cross-Validation, Coefficient of Variation
df
Degrees of Freedom
IID
Independent and Identically Distributed
LLN
Law of Large Numbers
MLE
Maximum Likelihood Estimation
MSE
Mean Squared Error
OLS
Ordinary Least Squares
PDF
Probability Density Function
PMF
Probability Mass Function
RMSE
Root Mean Squared Error
RSS
Residual Sum of Squares
SE
Standard Error
SD
Standard Deviation
Machine Learning Abbreviations
Abbreviation
Full Term
AUC
Area Under the Curve
CNN
Convolutional Neural Network
DT
Decision Tree
GB
Gradient Boosting
KNN
K-Nearest Neighbors
LASSO
Least Absolute Shrinkage and Selection Operator
NN
Neural Network
PCA
Principal Component Analysis
RF
Random Forest
ROC
Receiver Operating Characteristic
RNN
Recurrent Neural Network
SVM
Support Vector Machine
Basketball Abbreviations
See Section F.6 for comprehensive basketball statistics abbreviations.
This notation guide serves as a quick reference for symbols and conventions used throughout the textbook. When in doubt, context and chapter-specific definitions should take precedence.
← Previous
Appendix E: Glossary of Terms
Next →
Appendix G: Answers to Selected Exercises